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Accelerating CFD-Based Aeroelastic Analysis Using
Distributed Processing

Anthony A. Boeckman* and Andrew S. Arena, Jr.†

Oklahoma State University, Stillwater, Oklahoma 74078

Distributed processing is applied to CFD-based aeroelastic analysis to accelerate the
completion of flutter boundary predictions. The process for identifying an aeroelastic
stability boundary is divided into several independent simulations that are distributed to
multiple computers. The solutions are completed in parallel. This parallelism is used to
accelerate the prediction of the instability boundary. This process is also applied to the
generation of training data for the system identification of the unsteady aerodynamic
response to motion and force on a modal structural model. The equipment used in this study
is common, off-the-shelf computing hardware. This method is application ready with no
required alterations to the CFD solver. Results address the extent to which this methodology
is applicable to aerospace applications.

Nomenclature
fa = generalized aerodynamic force vector
N = number of data points in training set
Np = number of data points in a parallel training set
na = number of previous aerodynamic forces
nb = number of previous structural displacements
np = number of Central Processing Units
nr = number of roots or mode shapes
q = free stream dynamic pressure
q = generalized displacement vector
ρ = free stream density

Introduction
REDICTING instabilities in the aeroelastic behavior of aerospace structures is important in the design of
modern aircraft that operate over a wide flight envelope. However, a complete aeroelastic analysis is often

difficult to complete due to the complex structural, aerodynamic, and control interactions associated with even the
simplest flight vehicles. To obtain the most accurate predictions for aircraft flight characteristics, contemporary
research has turned toward the development of integrated computational models capable of capturing these
interactions.

CFD models based on the Euler governing equations are powerful computational tools for aerodynamic analysis.
Such models are often desirable for advanced aerospace applications since they make few assumptions about the
characteristics of the flow field. Euler models produce reliable and accurate pressure distribution predictions, which
drive the structural response. For aeroelastic analysis, one can take advantage of these benefits by coupling an
unsteady Euler CFD algorithm to a time accurate structural dynamics solver. This coupled model predicts the
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complete aeroelastic response of an aerostructure. However, the computational time required for a CFD-based
aeroelastic simulation has typically limited the use of such models in a flight test operational environment, even with
recent advances in computational speeds.

This study seeks to further develop the relatively underdeveloped use of simple parallel processing techniques to
speed the prediction of flutter boundaries. This is of particular interest in the flight test community, as they
commonly have budget constraints on computational resources. Methods that use low cost computer clusters to
reduce prediction times offer to enhance flight test productivity.

One possible method to accelerate the prediction is the use of system identification to model the aerodynamic
response of the CFD solver to motion of the modal structural dynamics solver.1 Once a model is trained, it will
complete a simulation in seconds, compared to the weeks a CFD solution requires. The general form of the discrete
Autoregressive Moving Average (ARMA) model is expressed as,
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However, the system model must be trained, and generating the training set can require just as much time as
multiple CFD simulations. The relationship between the number of mode shapes and the number of data points
needed to completely determine the system, N, is expressed as,

2nrnbnrnaN ⋅+⋅= (2)

Since the number of data points needed to determine a system model is a function of the number of roots, nr,
from the free vibration analysis used in the structural dynamics solver, the time needed to generate the training set
increases with the complexity of the structural model. The trend is shown in Fig. 1 for the Generic Hypersonic
Vehicle, GHV.2 In this figure, a model of order 4-10, na-nb, is assumed to for all nr. The system identification
training data must also be a response to a known input. The input signal used in this study is a chirp based frequency
sweep. The sweep range is selected to include the natural frequencies of the structure.1,3
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Fig. 1 Number of data points, or time steps, required for a dynamic pressure sweep and a system
identification search.

Recent work has focused in reducing the time to complete a single discrete CFD time step. Several researchers
have done extensive work on the acceleration of CFD speeds by applying parallel processing.4,5 These methods used
domain decomposition to divide the flow field into smaller zones, which separate processors then simulate. This
method requires that the processors communicate the boundary values to other processors. The speed of that
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communication affects the efficiency of the solver. The method also requires that the flow solver have the capability
to handle the decomposition.

Another method to accelerate the completion of an aeroelastic instability boundary is distributed parallel
processing, in particular the technique of distributed batch processing.6 In this method, the problem of predicting an
aeroelastic flutter boundary is reduced into several independent simulations, which are then sent to separate
computers. A central computer controls which computers handle individual simulations. The individual computers,
often called nodes, perform the CFD simulations then report the results to the central node. This technique can be
applied to the system identification method as well. The generation of the training data set can be divided into a
group of independent responses to input signals.

A methodology for the implementation of distributed batch processing is presented here, with results from two
typical aeroelastic test cases.

Computational Tools
Computational analysis for this study is performed using the aeroelastic capabilities of the Euler3d (Ref. 7) code,

part of the STARS8 suite of programs. STARS is a highly integrated, finite element based software suite for
multidisciplinary analysis of flight vehicles, including static and dynamic structural analysis, computational fluid
dynamics, heat transfer, and aeroservoelastic capabilities. STARS is developed at NASA’s Dryden Flight Research
Center.

Structural analysis in STARS is accomplished using the finite element method to compute eigenvectors and
eigenvalues, which describe the elastic modes for a structure. Arbitrary motions of the structure can then be
represented by multiplying each eigenvector by a generalized displacement and applying modal superposition.
Euler3d uses a time-marched, finite element approach to solve the unsteady Euler equations. The CFD solution is
performed on a mesh consisting of unstructured tetrahedra using the transpiration method9 to simulate structural
deformations.

A complete aeroelastic analysis is accomplished by coupling the structural dynamics solver, using the modal
vectors, with the unsteady CFD solver, which computes the generalized aerodynamic forces acting on the structure.
The coupled solution is then a time marched methodology for solving
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the matrix equation of motion for an arbitrary structure using generalized coordinates.
For this study, a cluster of eight personal computers was used for the computation of the aeroelastic responses.

The individual nodes of the cluster were all Intel Pentium 4 2.53 GHz processors on Intel 845ge chipset
motherboards with one gigabyte of RAM. Due to the nature of distributed batch processing, the master node does
not require any special equipment. The computers are connected through a fast ethernet switch.

Distributed Processing Methodology
The standard method of searching for a flutter boundary with a CFD-based model of an aeroelastic system is the

determination of the damping of several responses at various dynamic pressures. Using a curve fit, the dynamic
pressure of the flutter boundary is estimated. This method is well suited to distributed batch processing. The
geometry and structural dynamics are sent to each computing node. Each node is then assigned a dynamic pressure
to simulate. Once all the simulations are complete, the aeroelastic investigator performs the analysis of the damping.
Using batch processing, an entire flight envelope can be swept in the same time required to simulate a single
response, assuming that enough computer nodes are available. In general, the speed advantage of this method is
difficult to predict, as it is not known how many responses must be simulated before encountering the flutter
boundary. However, assuming that all the computers in a cluster, np, are used for each sweep, then the speed
increase is a factor of np.

Distributed batch processing can be applied to CFD system identification by dividing up the generation of
training data. The training data can be separated by dividing the individual mode shapes into nr independent signals,
where nr is the number of eigenvectors or mode shapes. The number of data points required for each mode shape is
Np, expressed as,

nrnbnaNp ⋅+= (4)
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This is the number of points needed to determine the parameters for the effect of previous forces and motions on the
current force on the mode.

The time required to complete a training set for the entire structural system can be determined by multiplying the
number of data points to be calculated on a machine by the time the machine takes to complete a single data point.
For a heterogeneous cluster, machines of varying computational speed, the time to finish a training set can be
expressed as,

pii NdtZTime ⋅⋅= )max(  (5)

where i refers to the index of a node, dt is the time the machine requires to finish a data point, and Z is the
number of mode shapes assigned to the machine. The maximum value of this set of times is used, so that a true
estimate of the time until completion of the training set is found. Since the combination of Z  and dt is the
determining factor in the time to completion, this value should be minimized to increase the efficiency.

For most cases, the machines within a cluster will have nearly identical speeds. This allows the replacement of
the dti term with a constant dt. This is expressed as,

dtNZTime pi ⋅⋅= )max( (6)

In the common case of np equal to nr, the Z term goes to unity. The resulting relationship between time and nr is
expressed as,

dtnrnbnadtNTime p ⋅⋅+=⋅= )( (7)

Since the serial, one computer, training data generation requires N ⋅ dt, the ratio of speed increase can be
expressed as,
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This indicates that for a sufficiently large cluster, the time to complete a training data set is reduced by a factor
of nr. So, for the average full airplane simulation with about 15 mode shapes the time is reduced by 93%. Note that
nr is still in Eq. (7). So artificially increasing nr will not help. The effect of nr on time has been changed to a linear
function Eq. (7) from a quadratic Eq. (2).

Results
Distributed batch processing is applied to the two methods of locating a flutter boundary for several geometries

over a range of flight regimes. One such geometry is the AGARD445.6. The AGARD445.6 is a standard aeroelastic
test case, which was investigated experimentally at NASA’s Langley Research Center.10 The planform view of the
geometry is shown in Fig. 2.

For this example, the AGARD445.6 is modeled with two structural modes. These modes represent first bending
and first torsion. The CFD mesh has 69,630 nodes and 373,798 tetrahedral elements. The Mach number is 0.96.

Using two computing nodes of the cluster, the response to a forced motion of each mode is simulated. The forced
motion includes a frequency sweep through a range surrounding the structure’s natural frequencies. Using the
method of state space representation11 for the combined structural and aerodynamic systems, the eigenvalues of the
system as a function of the dynamic pressure are plotted. Since the system is a discrete time model the eigenvalues
with an absolute value greater than one represent instability in the system. The first dynamic pressure to yield an
unstable eigenvalue is considered the flutter boundary.

A sweep of the dynamic pressures from zero past the flutter boundary is run. After this initial sweep, the
increment of the density is refined to the necessary tolerance. The flutter pressure for the AGARD445.6 at Mach
0.96 is found to be 0.40 psi using the system identification technique. This agrees well with experimental10 and other
computational11,12 results. An eigenspace plot of the system stability for various dynamic pressures near the flutter
boundary is shown in Figure 3.

In general, the prediction of the system identification model is confirmed with a sweep of the density in the full
CFD model. For the AGARD445.6 at Mach 0.96, the flutter prediction of the system identification model was used
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as a starting point. Five dynamic pressures were chosen, and are listed in Table 1. The damping of the first mode is
listed as well. A 4th order curve is fit to the five data points relating the damping and the dynamic pressure. This is
shown in Figure 4.

Table 1 Dynamic pressures in the density sweep of the AGARD445.6 at Mach 0.96

Dynamic
Pressure, q CPU hours

Damping on
Mode 1, ξ

0.32 psi 22.6 0.01276
0.36 psi 22.4 0.01077
0.40 psi 22.5 0.00251
0.44 psi 22.6 -0.00141
0.48 psi 23.1 -0.01274

Fig. 2 AGARD445.6 test wing geometry and surface discretization.

The damping trend predicts a flutter point at 0.422 psi. This is an excellent match with experimental data.10 The
density sweep requires 23.1 CPU hours on five nodes of the cluster. In contrast, using one node of the cluster would
require 112 CPU hours, assuming five times the fastest node of 22.4 CPU hours. The distribution of the free
response onto multiple computers saved 88.9 CPU hours, a 79% savings in time.

The time to finish a density sweep and the time to finish the development of a system identification procedure is
compared using the time to complete one time step on an average node of the cluster. Figure 5 shows the
relationship between the time for a sweep of dynamic pressures and system identification as a function of the
number of mode shapes used in the structural dynamics solver. Note that the pressure sweep free response technique
is not an explicit function of the number of mode shapes, nr. The steps within the trends for system identification
with a set number of nodes is due to the number of nodes required to complete more than one simulation before
finishing. The density sweep is assumed to require only four free response time histories to make a flutter prediction.

Another interesting geometry is the Generic Hypersonic Vehicle, GHV.2 The GHV is a test case developed by
NASA to test the possible aeroelastic effects that would be observed on a hypersonic vehicle. Figure 6 shows the
geometry and surface mesh for the GHV. The grid has 58,511 nodes and 321,755 tetrahedral elements. The GHV is
modeled at Mach 2.2 for this example. Structurally the GHV is more complicated than the AGARD445.6. In this
example the mode shapes associated with the nine lowest eigenvalues are used. As shown in Fig. 6, it is possible for
the sweep of free responses at varying dynamic pressures to finish more quickly than the system identification
technique.
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Fig. 3 Complete root locus for AGARD445.6 discrete-time aeroelastic system at Mach 0.96 including close-up
of stability crossover point.

Damping Trend for AGARD445.6
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Fig. 4 Damping trend for the AGARD445.6.

A range of dynamic pressures is selected for a pressure sweep. The pressures are listed in Table 2. The free
response analysis takes 2.31 CPU hours to complete on eight nodes of the cluster. As shown in the table the
damping on Mode 2 is an indicator of the overall stability of the system. The dynamic pressure of 154.8 psi has a
damping of very near zero.

In order to further refine the flutter boundary estimate, a sweep is run between 141.9 and 167.7 psi. The results
are shown in Table 3.

The initial estimate of 154.8 psi is a valid flutter boundary prediction. The total time for the two dynamic
pressure sweeps is 4.60 CPU hours using all eight nodes of the cluster. The total time using only the fastest node of
the cluster is 35.56 CPU hours.
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Table 2 Dynamic pressures in the density sweep of the GHV at Mach 2.2

Dynamic Pressure, q CPU hours Damping on Mode 2, ξ
103.2 psi 2.26 0.03392
116.1 psi 2.24 0.03746
129.0 psi 2.30 0.03696
141.9 psi 2.26 0.05131
154.8 psi 2.31 -0.6177E-04
167.7 psi 2.22 -0.04274
180.6 psi 2.28 -0.05290
193.5 psi 2.27 -0.07259

Table 3 Dynamic pressures in the second density sweep of the GHV at Mach 2.2

Dynamic Pressure, q CPU hours Damping on Mode 2, ξ
141.9 psi 2.26 0.05131
144.8 psi 2.24 0.04624
147.7 psi 2.23 0.05485
150.6 psi 2.29 0.06916
153.5 psi 2.25 0.001982
154.8 psi 2.31 -0.6177E-04
156.3 psi 2.29 0.00090
159.2 psi 2.23 -0.01632
162.1 psi 2.26 -0.03071
165.0 psi 2.28 -0.02903
167.7 psi 2.22 -0.04274

Density Sweep and System Identification, AGARD445.6
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Fig. 5 The density sweep and system identification trends for the AGARD445.6 at Mach 0.96.
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Fig. 6 The generic hypersonic vehicle (GHV) geometry and surface mesh.

The system identification technique is used to predict the flutter point of the GHV as well. The prediction is
133.5 psi. This is a significant difference from the density sweep prediction. However, the model does predict a
boundary below the actual flutter pressure. Since the cluster has only eight nodes, one node of the cluster is required
to simulate the response of two mode shapes. This results in a near doubling of the time needed to finish the system
identification training set. The set takes 6.42 CPU hours to complete. The set could finish in 3.26 CPU hours with
nine computer nodes.

The time for the density sweep and the system identification procedures to finish are shown in Figure 7. Notice
that the system identification requires more time than the density sweep in most cases in the figure. This is a reversal
of the transonic AGARD445.6. This is most likely due to the larger time steps that can be used in the supersonic
regime were shocks are well established and less prone to motion compared to the transonic regime.

One interesting statistic of the distributed processing method is the efficiency of the examples listed here. The
efficiency is defined by

dDistribute

ialFastestSer

Time

Time
=η  (9)

where TimeFastestSerial is the fastest time for a node to complete a simulation and TimeDistributed is the time to finish
using multiple computers. Efficiency is best described as how well the computing power of the cluster is utilized
when processing a batch.

Density Sweep and System Identification, GHV
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Fig. 7 The density sweep and system identification trends for the GHV at Mach 2.2.
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For the AGARD445.6, the fastest time for the pressure sweep is 22.4 CPU hours (Ref. 13). The parallel
computing takes 23.1 CPU hours. This yields 97% efficiency. Only three percent of the possible computations are
wasted during the density sweep batch processing. The GHV shows a better efficiency with a 98.4% for the dynamic
pressure sweep.

The system identification method for the GHV does show the effect of running nine simulations on eight
computers. The fastest time for a simulation is 3.20 CPU hours. The distributed batch processing takes 6.42 hours.
This leads to a poor efficiency of 49.8%. However, it should be noted that the computing power of the seven nodes
not used to simulate the ninth mode shape training are available for use on other simulations because the computer
resources are released once their assigned simulations are complete. If nine computers were used to run the batch
processing, the time would require 3.33 CPU hours. This would yield an efficiency of 96.1%.

Conclusions
The distributed processing technique demonstrated here is shown to be an efficient method for the acceleration

of aeroelastic flutter prediction for both the dynamic pressure sweep or system identification methodology. This
method is applicable to any CFD flow solver. The method is shown to work in any flow regime including the
transonic region.

The distributed processing methodology has one additional benefit. No changes to the CFD solver are required.
Distributed processing libraries can be used to add automation features to CFD solver; however, the basic
methodology does not require it. Furthermore, the efficiencies found in the presented examples are shown to
compare well to other types of parallel processing.12
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